
Numerical Solution of Large
Nonsymmetric Eigenvalue Problems

Youcef Saad

November, 1988

Research Institute for Advanced Computer Science
NASA Ames Research Center .

RIACS Technical Report 88.39

NASA Cooperative Agreement Number NCC 2-387
.

(NASA-CR-1850 62) NUHEBUJAL SOLUTION OF N 89- 260 39
LARGE NONSYfitlEThIC E I G E N V A L U E PHOBLEliS
:Research I n s t . for Advanced Computer
Science) 3 3 p CSCL 121 U n c l a s

G3/64 0251443

Research Institute for Advanced Computer Science

.

Numerical Solution of Large
Nonsymmetric Eigenvalue Problems

Youcef Saad

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 88.39
November, 1988

We describe several methods on combinations of Krylov subspace techniques, deflation
procedures and preconditionings, for computing a small number of eigenvalues and eigenvectors
or Schur vectors of large sparse matrices. The most effective techniques for solving realistic
problems from applications are those methods based on some form of preconditioning and one of
several Krylov subspace techniques, such as Amoldi's method or Lanczos procedure. We
consider two forms of preconditioning: shift-and-invert and polynomial acceleration. The latter
presents some advantages for paralleYvector processing but may be ineffective if eigenvalues
inside the spectrum are sought. We provide some algorithmic details that improve the reliability
and effectiveness of these techniques.

Key Words: Sparse eigenvalue problems; Krylov subspace methods; Amoldi's method; Lanczos
Algorithm; Polynomial preconditioning; Deflation procedures; Shift and invert. Abbreviated
Title: Solution of Large Eigenvalue Problems

This paper is to appear as a special issue of Computer Physics Communications.

Work reported herein was supported in part by Cooperative Agreement NCC2-387 between the
National Aeronautics and Space Administration (NASA) and the Universities Space Research
Association (USRA) and partially supported by ARO under contract DAAL03-88-K-0085.

?

1 Introduction
Many important problems in science and engineering require the computation of a small
number of eigenvalues with algebraically largest (or smallest) real parts of a large nonsym-
metric real matrix A. Among the typical examples from the literature, see e.g., [9], we only
mention the important class of stability analysis and more generally of bifurcation prob-
lems [17], from which we will draw our main test example. From the numerical point of
view, nonsymmetric eigenvalue problems can be substancially more difficult to solve than
the symmetric ones. This is due to the fact that eigenvalues of large matrices can be arbi-
trarily poorly conditioned. In this paper we will propose a few techniques and tools that
can be combined with the traditional projection methods to enhance their efficiency and
robustness.

There have been mainly three basic projection methods for solving large nonsymmetric
eigenvalue problems investigated so far. The first is Bauer’s subspace iteration method and
its many variations [2,7,16,15,41,42,45]. An important drawback of this method, recognized
both in the symmetric case [23,21], and the nonsymmetric case [34,29] is that it may be
exceedingly slow to converge. Another known weakness is that it computes the dominant
eigenvalues of A, i.e., those having largest modulii, whereas in many important applications
it is the eigenvalues with largest real parts that are wanted. However, this d s c u l t y can be
obviated by using Chebyshev acceleration as is suggested in [29]. The second method is due
to Arnoldi [1,34] and is essentially an orthogonal projection method on the Krylov subspace
{ V I , A V ~ , . . . Am-’v1}. Thus, Arnoldi’s method is a generalization of the symmetric Lanczos
algorithm. Its main drawback is that, unlike the symmetric Lanczos algorithm, the growth of
computational time and storage becomes excessively high as the number of steps increases.
Variations on the basic scheme have been proposed [34], which lead to oblique projection
type techniques [30], but their theory is not well understood. Finally, the third method
is the nonsymmetric Lanczos method [8,19,25,22,43] which is another generalization of the
symmetric Lanczos algorithm due originally to Lanczos. It produces a tridiagonal matrix
some eigenvalues of which can be taken as approximations to the eigenvalues of A. A t the
difference with Arnoldi’s method, this is not an orthogonal projection method, but an oblique
projection method [30]. The algorithm runs the risk of breaking down at any step, which
has given a poor reputation to the method in the past [45]. Parlett, Taylor and Liu [22] have
suggested an elegant solution to this problem. Cullurn and Willoughby [8] have extended
their symmetric Lanczos algorithm without reorthogonalhtion, to the nonsymmetric case
and suggest a new way for dealing with the resulting non-hermitian tridiagonal matrices.
On the whole the main difficulty with the nonsymmetric Lanczos method is theoretical, as
the method is not too well understood.

To these three basic methods one should add a number of tools such as deflation processes
and acceleration/ preconditioning techniques the best example of which is the so-called shift-
and-invert strategy. This paper is not concerned with the projection methods enumerated
above but rather with the implementation of these secondary tools. It shows their importance
and proposes ways to put together efficient methods that exploits them in conjunction with
the projection techniques. More specifically we describe:

2

0 A particular case of Wielandt deflation which is of interest when computing Schur
vectors. We refer to this as Schur-Wielandt deflation.

0 A shift-and-invert strategy for general nonhermitian matrices.

0 A polynomial preconditioning technique consisting of iterating with the matrix p(A) ,

These techniques can be combined with any of the three projection methods discussed
above but we will illustrate their implementation only with Arnoldi’s method for the sake of
brievety.

Before proceeding further we would like to point out a few key differences between the
three projection methods. First, we emphasize that, in practice, subspace iteration is only
able to compute a small number of eigenvalues and associated eigenvectors of a large nonsym-
metric matrix. To some extent Arnoldi’s method presents the same limitations in practice.
The nonsymmetric Lanczos algorithm without reorthogonalization or with some form of
partial reorthogonalization is the only method that has the potential of computing a large
number of eigenvalues and eigenvectors of a nonsymmetric matrix A [8,25]. On the other
hand the Lanczos algorithm requires the use of both the matrix A and of its transpose. In
some applications the matrix A is not available explicitly but the action of multiplying A
by a vector is easy to perform, by use of a finite difference formula. In those cases AT is not
available and cannot even be approximated with finite differencing. For example one may be
interested in studying the stability of a dynamical system governed by a partial differential
eauation of the form

where p is a carefully chosen low degree polynomial.

- aU = F (u , ~)
at

where F is a partial differential operator, and 9 some real parameter, as 6 varies. Such a
system is said to be stable if all the eigenvalues of the Jacobian of F with respect to u,
computed at the steady state solution, have negative real parts. All that may be wanted
here is to compute one eigenvalue or a complex pair of eigenvalues. Although the Jacobian
matrix J at some coordinate u may not be available explicitly, the multiplication of J by
an arbitrary vector 2 can be carried out, usually at low cost, with the help of the difference
formula

F(u + E Z , ~) - F(U, 6) Jx w 7
e

where e is some small and carefully chosen scalar.
The approximation (2) has been useful in solving nonlinear systems of equations [3,6,12,4,

44,181 and to compute eigenvalues of various semi-discrete operators [ll] used in compressible
fluid flow calculations. Here, an algorithm such as Arnoldi’s method can be used but not
the nonsymmetric Lanczos procedure since we do not know to compute the vector JTx for
any vector 3 when the Jacobian matrix J is not explicitly available.

In the numerical experiments section we illwtrate these techniques with an example
issued from a well-known and simple bifurcation model from Chemical engineering. Problems
of this type are numerous in structural engineering [5], in aerodynamics (the panel flutter
problem [37]), chemical engineering [14], fluid mechanics [lo] and many other fields.

3

2 A Schur-Wielandt deflation technique
When used with caution, deflation procedures can be quite useful and effective if a small
number of eigenvalues and eigenvectors are to be computed. In the nonsymmetric case many
common deflation techniques require the knowledge of both right and left eigenvectors. These
procedures, an example of which is Hotelling’s deflation, can be ill-conditioned if only because
the determination of eigenvectors of a general sparse matrix can be itself untrustworthy. In
fact in the defective case there may not exist a basis of the invariant subspace consisting of
eigenvectors and therefore any numerical method that attempts to determine such a basis
will have numerical difficulties. As suggested by Stewart [42] it is preferable to work with
Schur vectors, i.e. with an orthonormal basis of the invariant subspace, when dealing with
the nonsymmetric eigenvalue problem. A partial Schur factorization is of the form

AU = U R (3)

where U is an N x p complex orthogonal matrix (UHU = I) and R is upper triangular
complex matrix. Here, XH denotes the transpose of the complex conjugate of a matrix X.
Note that the order of the eigenvalues AI, A2,. . . A, as they appear in the upper triangular
matrix R is crucial. In fact, when the eigenvalues A I , A2, ..A, are distinct, then for a given
order this factorization is unique in the usual sense of QR factorizations, i.e. the columns
of U are uniquely determined up to a sign of the form eie. Thus, whenever we choose a
certain ordering of the eigenvalues, we can deal with the Schur vectors without confusion in
the same way that we deal with the eigenvectors of a Hermitian matrix. We will consider
later the problem of avoiding complex arithmetic when the matrix A is real.

In this section we describe a deflation technique which is a simple variation of Wielandt’s
deflation and show how it can be put to work to compute an orthonormal basis of an invariant
subspace and the corresponding partial Schur forms. We start our discussion with the general
Wielandt deflation with one vector and explain why Schur-Wielandt deflation is often nearly
optimal. In the following we denote by 11.112 the 2-norm in CN. Unless otherwise stated the
eigenvalues are ordered in decreasing order of their real parts (if a conjugate pair occur then
the one with positive imaginary part is first). All eigenvectors are assumed to be normalized
by their Euclidean norms.

2.1 Wielandt deflation with one vector
Suppose that we have computed the eigenvalue A 1 of algebraically largest real part and a
corresponding eigenvector u1 of a matrix A by some basic algorithm, say algorithm (A), which
delivers the eigenvalue of largest real part of the input matrix, along with an eigenvector.
For example, if the matrix A is known to have real eigenvalues, algorithm (A) can be some
variant of the power method. It is assumed in what follows that the vector u1 is normalized
so that llvl112 = 1. The problem is to compute the next eigenvalue A2 of A. An old technique
for achieving this is what is commonly called a deflation procedure: a rank one modification
of the original matrix is performed so as to displace the eigenvalue A I , while keeping all
other eigenvalues unchanged. The rank one modification is chosen so that the eigenvalue A2

.

4

becomes the one with largest real part of the modified matrix and therefore, Algorithm (A)

In the general procedure known as Wielandt’s deflation only the knowledge of the right
e can again be applied to the new matrix to retrieve the pair X2, u2.

eigenvector is required. The deflated matrix is of the form

(4)
H A1 = A - QUlv

where v is an arbitrary vector such that vHul = 1, and o is an appropriate shift. As is
well-known the eigenvalues of Al are the same as those of A except for the eigenvalue X1
which is transformed into the eigenvalue A1 - u.

Theorem 2.1 (Wielandt): The spectrum of A1 is

4%) = {A1 - u, A29 X3, *.., Xp} (5)

Moreover, the left eigenvectors of A associated with 1 2 , XJ, . . . , AN are peserved under the
deftation process, and so is the right eigenvector u1.

It is important to determine what the right eigenvectors become when i # 1. For each i ,
we will seek a right eigenvector of A1 in the form of iri = ui - 7;ul. We have

(6)
A1Gj = (A - OUlV H)(ui - ~ i u l) = A ~ u ; - [TiA, + u(u;, V) - 07i]ul

When i = 1, taking 71 = 0 shows again that any eigenvector associated with the eigenvalue
X1 remains an eigenvector of AI, associated with the eigenvalue A1 -0. For i # 1, it is possible
to choose 7; so that the vector 6; is an eigenvector of A1 associated with the eigenvalue A;:

Observe that the above expression is not defined when the denominator vanishes, but it is
then known that the eigenvalue X i = A1 - o is already an eigenvalue of AI, i.e., the eigenvalue
A1 - u becomes multiple, and we only have one eigenvector namely ul.

There are infinitely many different ways of choosing the vector o which can be taken to
be any vector in the affine subspace of dimension N - 1 of vectors whose inner product with
the vector ul is equal to one. A common choice is to take v = tu1 the left eigenvector. This
is referred to as Hotelling’s deflation and has the advantage of preserving both the left and
right eigenvectors of A as is seen from the fact ’yi = 0 in this situation.

An interesting question that remains to be answered is the following: among all the
choices ofv, which one(.) will provide the best possible condition number for the next eigen-
value A2 to be computed? The condition number of an eigenvalue is defined as the inverse of
the cosine of the angle between its corresponding right and left eigenvectors. It is a measure
of the sensitivity of the eigenvalue to perturbations in A. Thus, a large condition number,
i.e., a poorly conditioned eigenvalue, will cause difficulties to the numerical algorithm that
is used to compute that eigenvalue. This consitutes the motivation for the above question.

5

8

We will distinguish the eigenvalues and eigenvectors associated with the matrix AI from
those of A by denoting them with a tilde. The condition number of the next eigenvalue j\2

to be computed is, by definition [45,13],

where ii2, ti& are the right and left eigenvectors of A1 associated with the eigenvalue X2. From -

what we have seen earlier,
(7). Assuming that llw2ll2

- -

we know that & = w2 while ii2 = u2 - 7 2 ~ 1 where 72 is given by
= 1 weget,

where we have used the fact that (u1, q) = 0. It is then clear from (9) that the condition
number of A2 is minimized when 7 2 = (u2,ul) s C O S ~ (U ~ , U ~) . Let us define I = u2 -
cosO(u2, ul)ul, the vector obtained by orthogonalizing q against u1. Substituting this result
in (7) we obtain

which yields the condition,

1
(z , v) = - - (A ~ - A ~) mse(ul, u2)

U

to which we must add the normalizing constraint,

(u1, v) = 1 (12)

There are still infinitely many vectors v that satisfy the above two conditions in general.
Condition (11) may seem impractical because it uses the knowledge of the right eigenpair
(A2,212) which we are precisely trying to compute but one can think of an adaptive procedure
in which the deflation is adjusted as the iteration process delivers better approximations of
(X2, u2). Moreover, we are interested from the theoretical point of view, in analyzing how far
from optimal are the common choices of v. The conditions (11) and (12) allow us to select
v in a linear space of dimension 2. We will consider two important choices:

(1) Choose u in the linear span of u1 and u2;

(2) Choose v in the linear span of u1 and wl.

Consider (1) first. In this case we find that the optimal v is

1
vo,t = u1 - - (A ~ - A,) cotane(u2, ul) i

cond(i2) = c ~ ~ ~ (A ~) sine(~2 , ul)

U

in which i = z/llzll2. We also find that

6

Not surprisingly, we note that when 8 is close to n/2 , the choice v = u1 is nearly optimal.
This is the situation of the hermitian case. Moreover, when (A2 - A,) is small with respect
to d and the angle 8(u2, ul) is not too small, then the choice v = u1 is again nearly optimal.
This particular choice has an interesting additional property: it preserves the Schur vectors.

Proposition 2.1 Let ul be an eigenvector of A of norm 1, associated with the eigenvalue
X1 and let Al E A - aulur. Then the eigenvalues of Al are = X1 - Q and Xj = Xj , j =
2,3 ..., N . Moreover, the Schur vectors associated with xj, j = 1,2 ,3 ..., N are identical with
those of A .

Proof Let AU = UR be the Schur factorization of A, where R is upper triangular and
U is orthonormal. Then we have

The result follows immediately. 0

We now turn to the second way of choosing u. In this case we can express v as
v = QUI + /3wl and the optimality condition substituted in (7) yields,

Because 201 is orthogonal to u2 we immediately get

.cI X l - A2 & = I -
d

and from the constraint (12),
.l

yielding the optimal vector

where we have set for convenience 63 = A1 - A3. Moreover, the new condition number
Cond(i2) is also given by (14). It is revealed by (19) that when the first eigenvector is well
conditioned then since is usually much smaller than u, uw will not be too different from
211. On the other hand if the first eigenvalue is very ill conditioned, the best v is closer to
201. An interesting difference with the previous case is that everything here is computable
except 6, which can be easily estimated dynamically, Apart from this practical difference,
the two methods will provide the same condition number, i.e., they are, from the qualitative
point of view, identical. However, the second method requires computing both the right and
left eigenvectors whereas the first only requires the right eigenvector.

7

2.2 Deflation with a block of vectors
Let ul, u2,. . . uj be a set of Schur vectors associated with the eigenvalues XI, Xz,. . . X j . We
denote by Uj the matrix of column vectors ui, ~ 2 , . . . Uj. Thus,

Uj [~ 1 , ~ 2 , * - ~ j] (20)

is an orthonormal matrix whose columns form a basis of the eigenspace associated with
the eigenvalues XI , X2,. . .X i . We do not assume here that these eigenvalues are real, so the
matrix Uj may be complex. An immediate generalization of Proposition (2.1) is as follows.

Proposition 2.2 Let C, be the p x p diagonal matriz Cj = Diag{al ,az , . ..crj}. Then the
eigenvalues of the matriz

are A: = A; - a; for i 5 j and A: = A; for i > j . Momover, its associated Schur vectors are
identical with those of A.

Aj G A - UjCjUy, (21)
.

Proof Let AU = U be the Schur factorization of A. Thus, the matrix of the first j
columns of U being equal to Uj. We have

where Ej = [e l , e2,. . . ej]. Hence

AjU = U[R - EjCEf]

and the result follows.

2.3
It is interesting to note that the preservation of the Schur vecton is analogous to the preser-
vation of the eigenvectors under Hotelling’s deflation in the hermitian case. The above results
suggest a very simple incremental deflation procedure consisting of building the matrix Uj
one column at a time. Thus, at the j- th step, once the eigenvector Gj+l of A, is computed
by the appropriate algorithm (A) we can orthonormalize it against all previous u;’s to get
the next Schur vector uj+l which will be appended to uj to form the new deflation matrix
Vj+1. It is a simple exercise to show that the vector 2 ~ j + ~ thus computed is a Schur vector
associated with the eigenvalue and therefore at every stage of the process we have the
desired decomposition

where Rj is some j x j upper triangular matrix.

are chosen so that for example oi = A;.

Explicit Schur-Wielandt deflation in practice

AUj = UjRj, (24)

More precisely we may consider the following algorithm, in which the successive shifts bj

Algorithm
Do i = 0,1 ,2 ,..., j - 1:

8

1. Define A;

2. Orthonormalize ii; against ~ 1 , 1 4 2 , ..., u;-1 to get the vector u;.

From the practical point of view there are a few important details that make the deflation
procedure more effective. We first address the question of avoiding complex arithmetic when
the matrix A is real. With the above implementation, we may have to perform most of
the computation in complex arithmetic even when A is real. Fortunately, when the matrix
A is real, this can be avoided. In this case the Schur form is traditionally replaced by the
quasi-Schur form, in which one still seeks the factorization (11) but simply requires that the
matrix Rj, be quasi-triangular, i.e. one allows for 2 x 2 diagonal blocks. In practice, if is
complex, most algorithms do not compute the complex eigenvector yj+l directly but rather
deliver its real and imaginary parts YR, yr separately. Thus the two eigenvectors - YR f iyr
associated with the complex pair of conjugate eigenvalues Aj+1, Xj+2 = Aj+l are obtained at
once.

Thinking in terms of bases of the invariant subspace instead of eigenvectors, we note
that the real and imaginary parts of the eigenvector, generate the same subspace as the
two conjugate eigenvectors and therefore there is no point in working with the (complex)
eigenvectors instead of these two real vectors. Hence if a complex pair occurs, we only have
to orthogonalize the two vectors YR, yr against all previous ui’s and pursue the algorithm in
the same way. The only difference is that the size of Uj increases by two instead of just one
in these instances.

Another practical consideration, is that one never needs to form A1 explicitly. This is
important because in general this matrix is full. If the algorithm we are using requires
only matrix by vector multiplications, then clearly an operation of the form y = A l z =
(A - auv*)s can be performed as follows

Ai-1 - oi-lu;-luEl (initially define A. E A) and compute the dominant
eigenvalue A; of A; and the corresponding eigenvector iii.

a. Form y := Az and the scalar t = c (3, v)
b. Compute y := y - t u1
This procedure only requires that the vectors ul, and u be kept in memory along with

the matrix A . It is possible to deflate A1 again into A2 , and then into A3 etc. At each step
of the process we have

Here one needs only to save the vectors ti; and vi along with the matrix A. However, one
should be careful about the usage of deflation in general. It should not be used to compute
more than a few eigenvalues and vectors. This is especially true in the non hermitian case
because of the fact that the matrix Ai will accumulate errors from all previous computations
and this could be disastrous if the eigenvalue comput ed is poorly conditioned. A careful
analysis of these accumulation of errors is propoeed in the Appendix, where a computable
upper bound for the error on the computed invariant subspace is proposed. Another serious
difficulty with deflating with a large number of vectors is the high computational cost.

We now give a sketch of the Schur-Wielandt deflation procedure for computing the p
eigenvalues of largest real parts of a matrix A.

(25)
- H Ai = Ai-1 - U W V ~

9

Algorithm: Explicit Schur-Wielandt Deflation (ESWD)

1. Initialize:

j := 0, UO := {0}, Eo := 0.

2. Compute next eigenvector (s) :
Call algorithm (A) to compute the eigenvalue Xj+l (resp. the conjugate pair of eigenval-
ues X j + l , Aj+2 3 Ij+1) of largest real part of the matrix A, E A - U j C j U r , along with
an eigenvector y (resp. the real part and imaginary part YR, yz of the complex pair of
eigenvectors). Choose the next shift aj+l, and define Cj+l := Diag { r ~ l , a Z , . . .aj+l}.

3. Orthonormalize:

Orthonormalize the vector y (resp. the vectors YR, yz) against the vectors u1, N, ... uj,
to get uj+1, (rap. uj+lr uj+2).

Set Uj+l := [Uj, uj+l], j := j + 1, (resp. Vj+2 := [Uj, uj+l, uj+2], j := j + 2.)

4. Test:

If j < p goto 2, else set p := j, compute R, := UFACr, and exit.

We point out that the above algorithm has as a parameter the algorithm (A) , which
delivers the eigenvalue(s) with largest real part(s) with its (their) associated eigenvector(s).
The shift Oj+1 in step 2, is chosen so that the eigenvalues Xl, A S , . . . X p will in turn be the ones
with largest real parts during the algorithm. There is much freedom in choosing the shift but
it is clear that if it is too large then a poor performance in step 2 of the algorithm will result.
Ideally, we might consider choosing a so the real part of the eigenvalue just computed, i.e.
Xj coincides with that of the last eigenvalue AN. This yields aj+l = Re(Xj - AN). Clearly,
this value is not available beforehand but it suffices to have a rough estimate. Practically,
we found it convenient and not restrictive in any way to take all shifts equal to some equal
value a determined at the very first step j = 1. The matrix Cj then becomes a I .

For step 2, we will give more detail in the next sections on how to compute the eigenvectors
y or the pair of conjugate eigenvectors y~ f iyz. A crucial point here is that the matrix Aj
is never formed explicitly, since this would fill the matrix and is highly ineffective. Clearly,
if p is large the computational time of each matrix by vector multiplication becomes very
expensive. Another potential difficulty which we consider in detail later is the building up
of rounding errors.

In step 3, several possibilities of implementation exist. The simplest one which we have
adopted in our codes consists in a modified Gram Schmidt algorithm which allows for up
to two reorthogonalizations depending on level of cancellation. Another more expensive
method of orthogonalizing a set of vectors which is somewhat more robust is the Householder
algorithm.

10

Before exiting in step 4, the upper triangular matrix Rp is computed. For brevity we
have omitted to say in the algorithm that one need only compute the upper quasi-triangular
part since it is known in theory that the lower part is zero. Note, that the presence of
2 x 2 diagonal blocks requires a particular treatment. Alternatively, we may compute all
the elements of the upper Hessenberg part of 4, at a slightly higher cost. However, as will
be seen in the appendix this is not necessarily the beat choice. In the presence of round-
off, the matrix R, = UrAU, is slightly different from the Schur matrix, and computing
its eigenvalues correponds to applying a Galerkin process onto the subspace spanned by
the block Up. The appendix deals in detail with the error analysis of the Schur Wielandt
deflation.

2.4 Implicit deflation procedures
In many instances explicit deflation can be replaced by a procedure that blends more nat-
urally with the structure of the projection method such aa Arnoldi or subspace iteration.
The simplest illustration of this technique is with Arnoldi’s algorithm the standard version
of which is outlined next.

Algorithm: Arnoldi

1. Initialize:

Choose an initial vector q of norm unity.

2. Iterate: Do j = 1,2, ..., m

1. Compute w := Avj
2. Compute a set of j coefficients hij so that

is orthogonal to all previous vi’s.
3. Compute hj+l,j = llwlll and vj+l = w/hj+l,j.

The above algorithm produces an orthonormal basis of the Krylov subspace

K,,, = span{q, Avl, . . , Am-lt)l}.

The m x m upper Hessenberg matrix H m consisting of the coefficients hij computed by the
algorithm represents the restriction of the linear transformation A to the subspace K,, with
respect to this basis, Le., we have H m = V,TAVm, where Vm = [VI, Q, . . . , vm]. Approxima-
tions to some of the eigenvalues of A can be obtained from the eigenvalues of H m . This is

11

Amoldi’s method in its simplest form. In practice rn can be fixed and the algorithm can
be used iteratively, Le., it is restarted with v1 equal to the last approximate eigenvector
associated with the desired eigenvalue, until convergence is achieved. This is for the case
where only one eigenvalue/ eigenvector pair must be computed. In case several such pairs
must be computed, there are two possible options. The first, suggested in [34] is to take
vl to be a linear combination of the approximate eigenvectors. For example, if we need to
compute the p rightmost eigenvectors, we may take ;1 = E:=’=, pic;, where the eigenvalues are
numbered in decreasing order of real parts. The vector v1 is then obtained from normalizing
ij1. The simplest choice for the coefficients p;v is to take p; = 1, i = 1, ..p. There are several
drawbacks to this approach, the most important of which being that there is no easy way
of choosing the coefficients p; in a systematic manner. The result is that for hard problems,
convergence is difficult to achieve.

An alternative is to compute one eigenpair at a time and use deflation. One can use
deflation on the matrix A explicitly as was described earlier. Another implementation,
which we now describe, is to work with a single basis v1,q, ..., vm whose first vectors are the
Schur vectors that have already computed. Suppose that k - 1 such vectors have converged
and call them vl, v2, ..., Vk-1. Then we choose a vector v k which is orthogonal to V I , , vk-1

and of norm 1. Next we perform m - IC steps of an Arnoldi process in which orthogonality
of the vector vj against all previous vis, including V I , ..., vk-1 is enforced. This generates an
orthogonal basis of the subspace

span{ VI,. . . , Vk-1 , V k , Auk,. . . , A m - k V k)

Thus, the dimension of this modified Krylov subspace is constant and equal to m in general.
A sketch of this implicit deflation procedure applied to Arnoldi’s method is the following.

12

Algorithm: Arnoldi’s method with implicit deflation

A. Initialize:
Choose an initial vector v1 of norm unity.

B. Iterate on eigenvalues: Do k = 1,2, ..., p

1. Arnoldi Iteration. For j = L, k + 1, ..., m do:
0 Compute w := Avj
0 Compute a set of j coefficients hij so that w := w -

0 Compute hj+l, j = llwllz and Uj+l = w/hj+l,j.

hijvi is orthogonal
to all previous vi’s, i = 1,2, ..., j

2. Compute approximate eigenvector of A associated the eigenvalue j \k as well as its

3. Orthonormalize this eigenvector against all previous uj’s to get the approximate

4. If p j is small enough then accept ijk as the next Schur vector, and compute h;,k =

associated residual norm estimate P k .

Schur vector 6 k and define ?& := 6 k .

(Avk, v i) i = 1, .., k. Go to EndLoopB. Else goto B.l. .

End Loop-B

Note that in the B-loop, the Schur vectors associated with the eigenvalues XI, ..., Xk-1 are
frozen and so is the corresponding upper triangular matrix corresponding to these vectors.
As a new Schur vector has converged, step B.4 computes the k-th column of R associated
with this new basis vector. In the subsequent steps, the approximate eigenvalues are the
eigenvalues of the m x m Hessenberg matrix H , defined in the algorithm and whose k x k
principal submatrix is upper triangular For example when m = 6 and after the second Schur
vector, k = 2, has converged, the matrix H , will have the form,

* * * * * *
* * * * *

s ; ;]
* *

Therefore in the subsequent steps, we will consider only the eigenvalues that are not associ-
ated with the 2 x 2 upper triangular matrix.

13

3 Shift and invert strategies.
One of the most effective techniques for solving large eigenvalue problems is to iterate with
the shifted and inverted operator,

for standard problems and with (for example)
(A - 01)-' (29)

(K - aM)"M (30)

for a generalized problem of the form Kz = AMs. Strategies for adaptively choosing new
shifts and deciding when to shift and factor (K - OM) are usually referred to as Shift-and-
Invert strategies. Thus, Shift-and-Invert simply consists of transforming the original problem
(A - Xl)z = 0 into (A - 01)-'z = pz. The transformed eigenvalues pi are usually far better
separated than the original ones which results in better convergence in the projection type
algorithms. However, there is a trade-off when using Shift-and-Invert, because the original
matrix by vector multiplication which is usually inexpensive, is now replaced by the more
complex solution of a linear system at every step. When a new shift a is selected, the
LU factorization of the matrix (A - 01) is performed and subsequently, at every step of
Arnoldi's algorithm (or any other projection algorithm), an upper and a lower triangular
system are solved. Moreover, the cost of the initial factorization can be quite high and in the
course of an eigenvalue calculation, one needs to use several shifts, i.e. several factorizations.
Despite these additional costs Shift-and-Invert is an extremely useful technique especially
for generalized eigenvalue problems.

If the shift o is suitably chosen the matrix C = (A - uI)-I , will have a spectrum with
much better separation properties than the original matrix A and therefore should require
far less iterations to converge. Thus, the rationale behind shift and invert technique is that
factoring the matrix (A - 01) once, or a few times during a whole run in which o is changed
a few times, is a price worth paying because the number of iterations required with C is so
much smaller than that required with A that the expense of the factorization is paid off. For
the symmetric generalized eigenvalue problem Mz = XKx there are compelling reasons for
employing a Shift-and-Invert technique. These reasons are discussed at length in [21], [23],
[28] and [39], the most important one being that since we must factor one of the matrices K
or M in any case, there is little incentive in not factoring (K - OM) instead, to gain faster
convergence. Shift and invert has now become a fairly standard tool in structural analysis
because of the predominance of generalized eigenvalue problems in this applications area.

For nonsymmetric eigenvalue problems, much remains to be done to derive efficient Shift-
and-Invert strategies. Parlett and Saad [24] have examined different ways of dealing with
the situation where the matrices M and K are real and banded but the shift o is complex.
One such possibility is to replace the complex operator (K - oM)-'M by the real one

.-

Re[(K - oM)-'M]

whose eigenvectors are the same as those of the original problem and whose eigenvalues pi

14

are related to the eigenvalues Xi of (M, K) by

1 1 1
2 X i - ai X i - ai

p; = -[- +-]

One clear advantage of using (31) in place of (30) is that the latter operator is real and
therefore all the work done in the projection method can be performed in real arithmetic. A
nonnegligible additional benefit is that the complex conjugate pairs of eigenvalues of original
problem are also approximated by complex conjugate pairs thus removing some potential
difficulties in distinguishing these pairs when they are very close. On the practical side, the
matrix (K - aM) must be factored into the product LU of a lower triangular matrix L and
an upper triangular matrix U. Then every time the vector w = Re[(K - a M) ” M] v must
be computed, the forward and backward solves are processed in the usual way and then the
real part of the resulting vector is taken to yield w.

Let us now consider the implementation of Shift-and-Invert with an algorithm such as
Arnoldi’s method. Assume that the problem is to compute the p eigenvalues closest to a shift
00. In the symmetric case there is an important tool that is used to determine which of the
approximate eigenvalues should be considered in order to be able to compute all the desired
eigenvalues in a given interval only once. This tool is Sylvester’s inertia theorem which gives
the number of eigenvalues to the right and left of u by counting the number of negative
entries in the diagonal elements of the U part of the LU factorization of the shifted matrix.
In the nonsymmetric case a similar tool does not exist. In order to avoid the difficulty we
exploit deflation in the following manner. As soon as an approximate eigenvalue has been
declared satisfactory we proceed to a deflation process with the corresponding Schur vector.
The next run of Arnoldi’s method will attempt to compute some other eigenvalue close to bo.

With proper implementation, the next eigenvalue will usually be the next closest eigenvalue
to 00. However, there is no guarantee for this and there is no guarantee that an eigenvalue
will not be missed. This is a weakness of projection methods in the nonsymmetric case, in
general.

Our experimental code ARNINV based on this approach implements a simple strategy
which requires two parameters ml,m2 from the user and proceeds as follows. The code
starts by using a. as an initial shift and calls Arnoldi’s algorithm with (A - ~ 0 1) ’ ~ Arnoldi
to compute the eigenvalue of A closest to uo. Amoldi’s method is used with restarting, Le.,
if an eigenvalue fails to converge after the Arnoldi loop we rerun Arnoldi’s algorithm with
the initial vector replaced by the eigenvalue associated with the eigenvalue closest to uo. The
strategy for changing the shift is dictated by the second parameter m2. If after m2 calls to
Arnoldi with the shift 00 the eigenpair has not yet converged then the shift 00 is changed to
the best possible eigenvalue close to,ao and we repeat the process. As soon as the eigenvalue
has converged we deflate it using Schur deflation as described in the previous section. The
algorithm can be summarized as follows.

Algorithm: Shift-and-invert Arnoldi's method with implicit deflation

A . Initialize:

Choose an initial vector v1 of norm unity, an initial shift u, the dimension ml of the
Krylov subspaces to be used, and the number m2 of calls to Arnoldi before reshifting.

B. Eigenvalue loop: Do k = 1,2, . . . , p

1. Compute the LU factorization of (A - or).
2. If k > 1 then (re)-compute {hij = ((A - cI)-'~j, Vi)};,j=l,k-l-

3. Arnoldi Iteration. For j = k, k + 1, ..., m do:

0 Compute w := (A - oI) -~v~
0 Compute a set of j coefficients hij SO that w := w - ELl hijui is orthogonal

Compute hj+l,j := llwllz and ~j+1 := w/hj+l,j.

to all previous vi's, i = 1,2, ...,j

4. Compute eigenvalues of H,,, of largest modulus and get corresponding approxi-

5. Orthonormalize this eigenvector against all previous Vj'S to get the approximate

6. If P k is small enough then accept Vk as the next Schur vector. Go to End-LoopB.
7. If the number of restarts with the same shift exceeds m2 select a new shift and

mate eigenvector of (A -

Schur vector i i k and define vk := iik;

and an estimated error pk on the eigenvalue.

goto 1. Else restart Arnoldi's algorithm, i.e., goto 3.

End-LoopB.

A point of detail in the algorithm is that the k x k principal submatrix of the Hessenberg
matrix H,,, is recomputed whenever the shift changes. The reason is that this submatrix
represents the matrix (A-oI)-l in the first k Schur vectors and therefore it must be updated
as Q changes. This is in contrast with the simple Arnoldi procedure with deflation described
earlier. The above algorithm is described for general complex matrix and there is not attempt
in it to avoid complex arithmetic in case the original matrix is real. In this situation, we
must replace (A - ol)"vj in B.2 by Re[(A - oI) - lv ,] and make sure that we select the
eigenvalues corresponding to the eigenvalues of A closest to Q. We also need to replace the
occurrences of eigenvectors by the pair of real parts and imaginary parts of the eigenvectors.

4 Polynomial Preconditioned Arnoldi Algorithm
There are various ways of preconditioning a linear linear system AZ = b prior to solving it
by a Krylov subspace method. Preconditioning consists in transforming the original linear

16

system into one which requires fewer iterations with a given Krylov subspace method, without
increasing the cost of each iteration too much. For eigenvalue problems similar methods
have not been given much attention although the Shift-and-Invert technique can be viewed
as a means of preconditioning. Moreover, Davidson’s method is nothing but a form of
preconditioned Lanczos algorithm, where the preconditioning matrix is a diagonal matrix
which varies a t every step. This idea has been exploited by Morgan and Scott [20] who
propose a generalization of Davidson’s algorithm based on more general preconditioners.
Scott [38] also propose a preconditioned Lanczos procedure for the generalized eigenvalue
problem. These techniques involve approximating the inverse of (A - 01) by a matrix of
the form (M - a I) - I , where M can be some approximation of A. Note that in the ideal
case where a is an exact eigenvalue of A, and as (M - aI)-I is usually nonsingular then the
rest of the eigenvalues will tend to cluster around one. This good separation will make the
algorithm deliver the eigenvalue closest to c very quickly. These alternatives to Shift-and-
Invert might be useful in the case where factoring the matrix (A - 01) is out of the question
because of the size of the problem.

For a classical eigenvalue problem, one alternative is to use polynomial preconditioning
as is described next. The idea of polynomial preconditioning is to replace the operator B by
a matrix of the form,

.

Br = pr (A) (33)
where p r is a degree r polynomial. Ruhe [27] considers a more general method in which Pr is
not restricted to being a polynomial but can be a rational function. When an Arnoldi type
method is applied to B,, we do not need to form Br explicitly, since all we will ever need in
order to multiply a vector 3 by the matrix B, is k: matrix-vector products with the original
matrix A and some linear combinations.

Instead of attempting to compute several eigenvalues of A at once aa was suggested in
[34,29,32] the method proposed here is to compute only one eigenvalue at a time or possibly
a pair of complex conjugate eigenvalues at a time. Deflation is then used to compute the
next desired eigenvalues and eigenvectors until satisfied. The goal is to improve robustness,
sometimes perhaps at the expense of efficiency. The preconditioning methods rest on the
idea that all the difficulties in Arnoldi type methods, come from the poor separation of the
desired eigenvalues. The real problem is that often the desired eigenvalues are clustered
while the non wanted ones are well separated, which results in the method being unable to
retrieve any element of the cluster and leads to very poor performance, often divergence.

For fast convergence, we would ideally like that the next wanted eigenvalue of A be
transformed by Pr into an eigenvalue of Br that is very large as compared with its remaining
eigenvalues. There are many ways of providing a satisfactory solution to this problem. The
one considered here is derived from [32]. First we impose the constraint

Thus, we can attempt to minimize some norm of pr in some region subject to the con-
straint (34). We can choose the norm of the polynomials, to be either the infinity norm
or the &-norm. Because it appears that the Lz-norm offers more flexibility and performs

17

usually slightly better than the infinity norm, we will only consider a technique based on
the least squares approach. We should emphasize, however, that a similar technique using
Chebyshev polynomials can easily be developed. The procedure for computing the least
squares polynomials has been described in detail elsewhere and we will refer the reader to
the articles [32,31].

Once the polynomial p , is calculated the preconditioned Arnoldi process consists in using
Amoldi's method with the matrix A replaced by B, = p,(A). This will provide us with ap-
proximations to the eigenvalues of B, which are related to those of A by A;(&) = p,(A;(A))
It is clear that the approximate eigenvalues of A can be obtained from the computed eigen-
values of B, by solving a polynomial equation. However, the process is complicated by the
fact that there are IC roots of that equation for each value A;(&) that are candidates for rep-
resenting one eigenvalue A;(A). The difficulty is by no means unsurmountable but we have
preferred a more expensive but simpler alternative based on the fact that the eigenvectors of
A and B, are identical. At the end of the Arnoldi process we obtain an orthonormal basis V,,,
which contains all the approximations to these eigenvectors. A simple idea is to perform a
Galerkin process for A onto Span[V,,,] by explicitly computing the matrix A,,, = VfAV,,, and
its eigenvalues and eigenvectors. Then the approximate ei envalues of A are the eigenvalue
of A,,, and the approximate eigenvectors are given by Vmyi where y,!") is an eigenvector of
A, associated with the eigenvalue x;. A sketch of the algorithm is as follows.

18

Polynomial Preconditioned Arnoldi with Deflation

A. Start: Choose the degree r of the polynomial p,, the dimension m of the Arnoldi
subspaces and an initial vector 01.

B. Initial Arnoldi Step; Using the initial vector 4, perform m steps of the Arnoldi method
with the matrix A.

C. Eigenvalue loop. Do k = 1,2, ..., p :

1. Projection Step:

Obtain the matrix A,,, = VZAV, and its rn eigenvalues (XI,. . . x,,,} and
eigenvectors c i .

Compute the approximate eigenvector Vmgk, and orthogonalize it against all
previous Vi's to get the next approximate Schur vector Get the cone-
sponding residual norms pk.

If pk is small enough then goto Endloop-C.
Adapt: From the previous convex hull and the set {Xk+l,. . . , I,,,} construct
a new convex hull of the unwanted eigenvalues.
Compute the new least squares polynomial pr of degree r .

2. Arnoldi itemtion:
Starting with vk = i i k , generate m - k vectors by Arnoldi's method applied to
the matrix B, = p, (A) . The result is a set of m orthonormal vectors V,,, =
[VI, R, ..., v ~] . GO to 1.

Endloop-C

When passing from step 2 to step 3, it is not necessary to actually compute the matrix
A,,, which is available in step 2 as the Arnoldi matrix H,. We have skipped some details
concerning the deflation process because of the resemblance with the process of the Shift-
and-invert algorithm described earlier.

5 Numerical experiments
All numerical tests have been performed on an Alliant FX-4, using double precision, i.e.,
the unit roundoff is 2-56 m 1.3877 x lo-". Our test example, taken from [26], models
concentration waves in reaction and transport interaction of some chemical solutions in a
tubular reactor. The concentrations x(r, z), y(r, z) of two reacting and diffusing components,
where 0 5 z 5 1 represents a coordinate along the tube, and r is the time, are modeled by
the system: [26]:

ax D,a2X
67 L2 a22

+ f (3, Y), -= --

19

with the initial condition

and the Dirichlet boundary conditions:

x (0 , r) = x(1 ,r) = z

Y(0,T) = Y (l , 4 = j i .
The linear stability of the above system is traditionally studied around the steady state

solution obtained by setting the partial derivatives of x and y with respect to time to be
zero. More precisely, the stability of the system is the same as that of the Jacobian of (5) -
(5) evaluated at the steady state solution. In many problems one is primarily interested in
the existence of limit cycles, or equivalently the existence of periodic solutions to (5), (5).
This translates into the problem of determining whether the Jacobian of (S), (5) evaluated
at the steady state solution admits a pair of purely imaginary eigenvalues.

We consider in particular the so-called Brusselator wave model [26] in which

f (x , y) = A - (B + 1) ~ + z2Y

g(t , y) = BX - x2y.

Then, the above system admits the trivial stationary solution z = A, @ = B/A. A stable
periodic solution to the system exists if the eigenvalues of largest real parts of the Jacobian
of the right hand side of (5), (5) is exactly zero. For the purpose of verifying this fact
numerically, one first needs to discretize the equations with respect to the variable z and
compute the eigenvalues with largest real parts of the resulting discrete Jacobian.

For this example, the exact eigenvalues are known and the problem is analytically solv-
able. The article [26] considers the following set of parameters

1
2

Dz = 0.008, D, = -Dz = 0.004,

A = 2, B = 5.45

The bifurcation parameter is L. For small L the Jacobian has only eigenvalues with negative
real parts. At L 0.51302 a purely imaginary eigenvalue appears. Our tests verify this fact.

Let us discretize the interval [0,1] using n + 1 points, and define the mesh size h 3 l /n .
The discrete vector is of the form (;) where x and y are n-dimensional vectors. Denoting
by fh and g h the corresponding discretized functions f and g, the Jacobian is a 2 x 2 block
matrix in which the diagonal blocks (1 , l) and (2,2) are the matrices

afh(x, Y)
A- ' DZ Tridiag(1, - 2 , l) +
h2 L2

20

and
-2 1 D Tridiag{ 1, -2 , l) + %'h(z, Y)
h2 L2 aY

respectively, while the blocks (1,2) and (2 , l) are

respectively. Note that since the two functions f and g do not depend on the.variable z, the
Jacobians of either f h or gh with respect to either x or y are scaled identity matrices. We
denote by A the resulting 2n x 2n Jacobian matrix. We point out that the exact eigenvalues
of A are readily computable, since there exists a quadratic relation between the eigenvalues
of the matrix A and those of the classical difference matrix Tridiag{ 1, -2 , l) .

We will refer to the shift-and-invert Arnoldi algorithm described in Section 3 as ARNINV
and to the polynomial preconditioned Arnoldi method of Section 4 as ARNLS. It is difficult
to select a suitable stopping criterion for nonsymmetric eigenvalue problems. In our case we
have adopted to stop as soon as the residual norm is smaller than some tolerance e. However,
the matrices may be scaled differently and we decided to scale the residual n o m by the
average singular value of the Hessenberg matrix produced by the projection process. More
precisely, at every step we compute the square of the Frobenius norm fm = Trace (H,",),
and take as an estimate of the error of the computed pair eigenvalue/eigenvector the number

where p is the computed residual norm provided by the method. Note that the denominator
represents the square root of the average of the squares of the singular values of Hm. In
ARNLS the same scaling is used except that for the projection step (Step 4 of Algorithm
ARNLS), Hm is replaced by the matrix A m . Recall [34] that it is not necessary to compute
the eigenvectors explicitly in Arnoldi in order to get the residual norms because these are
equal to the products of hm+l,m by the last component of the corresponding normalized
eigenvectors of the matrix H m .

We used a discretization of n = 100 subintervals, i.e., the size of the resulting matrix
is 200. We tested ARNINV to compute the six rightmost eigenvalues of A. We took as
initial shift the value B = 0, and ml = 15, m2 = 10. In this case ARNINV delivered all the
desired eigenvalues by making four calls to the Arnoldi subroutine and there was no need for
chaning shifts. The tolerance imposed was e = The result of the execution is shown in
Figure 1. What is shown in the figure is the progress of the algorithm after each projection
(Arnoldi) step. The headings indicate the number of the eigenvalue that is being computed.
Thus, when Arnoldi is trying to compute the eigenvalue number 3, it has already computed
the first two (in this case a complex conjugate pair), and has deflated them. We print the
eigenvalue of interest, i.e., the one we are trying to compute, plus the one that is likely to
converge after it. The last column shows the actual residual norm achieved.

We rerun the above test with the initial shift u, namely BO = -0.5 + 0.2i and we changed
m2 to m2 = 3. Initially, the run looked similar to the previous one. A pair of complex

21

conjugate eigenvalues were found in the first Arnoldi iteration, theri, another pair in the
second iteration, then none in the third iteration and one pair in the fourth iteration. It
took two more iterations to get the eigenvalues number 7 and 8. For the last eigenvalue a
new shift was taken because it took three Arnoldi iterations without success. However the
next shift that was taken was already an excellent approximation and the next eigenvalue
was computed in the next iteration. The cost was much higher than the previous run with
the cpu time climbing to approximately 5.65 seconds.

We now illustrate the use of ARNLS on the above example. We fixed the dimension of
the Krylov subspace to be always equal to rn = 15. The degree of the polynomial was taken
to be 20. However, note that the program has the capability to lower the degree by as much
as is required to ensure a well conditioned Gram matrix in the least squares polynomial
problem. This did not happen in this run however, i.e. the degree was always 20. Again,
ARNLS was asked to compute the six rightmost eigenvalues. The run was much longer so
its history cannot be reproduced here. Here are however a few statistics.

0 Total number of matrix by vector multiplications for the run = 2053;

0 Number of calls to the projection subroutines = 9;

0 Total cpu time used = 3.88 sec.

Note that the number of projection steps is more than twice that required for Shift-and-
invert. The execution time is also more than 80 % higher. We rerun the same program by
changing only two parameters: m was increased to m = 20 and the degree of the polynomial
was set to P = 15. The statistics are now as follows:

0 Total number of matrix by vector multiplications for the run = 1144;

0 Number of calls to the projection subroutines = 5;

0 Total cpu time used = 2.47 sec.

Both the number of projection steps and the execution times have been drastically re-
duced and have come closer to those obtained with shift-and-invert. One of the disadvantages
of polynomial preconditioning is precisely this wide variation in performance depending on
the choice of the parameten. To some extent there is a similar dependence of the per-
formance of ARNINV on the initial shift, although in practice a good initial shift is often
known. A superior feature of shift and invert is that it allows to compute eigenvalues in-
side the spectrum. Polynomial preconditioning can be generalized to this case but does not
perform too well in general. We should also comment on the usefulness of using polynomial
preconditioning in general, One often heard argument against polynomial preconditioning is
that is it suboptimal: in the symmetric case the conjugate gradient and the Lanczos meth-
ods are optimal polynomial processes in that they provide the best possible approximation,
in some sense, to the original problem from Krylov subspaces. Hence the argument that
polynomial preconditioning would not do as well if one counts the total number of matrix by
vector multiplications. The counter argument in the nonsymmetric case is a simple one: the

22

re (lambda) im (lambda) * res. norm *
0.1807540453D-04 + i. 0.2139497548D+01 * 0.2121)-09 *
0.1807540453D-04 + 1. -0.2139497548D+Oi * 0.212D-09 *
-0.6747097569D+00 + 1. 0.2528559918D+01 * 0.224D-06 *
-0.6747097569D+00 + i. -0.2528559918D-tOl * 0.224D-06 *

computing eigenvalue number 3 ...
re(1ambda) im (lambda) * res. norm *

-0.6747097569D+00 + i. 0.2528559918D+Ol * 0.479D-13 *
-0.6747097569D+00 + i. -0.25285599183)+01 * 0.479D-13 *
-0.2780085122D+Ol + 1. 0.2960250300D+Ol * 0.336D-01 *
-0.2780085122D+01 + i . -0.29602603003)+01 * 0.336D-01 * ...

computing eigenvalue number 5 ...
re (1 ambda) i m (1 ambda) * res. norm *

-0.1798530837D+Ol + i. 0.3032164644D+Ol * 0.190D-06 *
-O.l798530837D+Ol + i. -0.3032164644D-tOl * 0.190D-06 * ...

computing eigenvalue number 5 ...
re(lambda1 im (1 ambda) * res. norm *

-0.1798530837D+01 + i. 0.3032164644D+Ol * O.lO2D-11 *
-0.1798530837D+Ol + i. -0.3032164644D+Ol * O.102D-11 *
-0.2119505960D+O2 + i. O.l025421954D+OO * 0.749D-03 *

average error = 0.6820322E-14
total execution time - 2.13 sec.

Figure 1: Convergence history of ARNINV for first test. Each separate output corresponds
to a call to Arnoldi’s module

23

optimality result is no longer true. For linear systems, algorithms such as GMRES or GCR,
are known to be optimal in the sense that they obtain the solution with smallest residual
norm in the Krylov subspace [36,35]. However, this optimality is only valid for the highly
impractical case where a full orthogonalization process with no restarting or truncation is
undertaken at every step. In fact even in the symmetric case the optimality result is only
true in exact arithmetic, which is far from the real situation where loss of orthogonality is a
rather severe and damaging phenomenon.

The next question is whether a simple restarted Arnoldi algorithm would perform better
than a polynomial preconditioned method. The answer is a definite no. A run with ARNIT
[33] an iterative Arnoldi method with deflation failed even to deliver the first eigenvalue of
the test matrix used in the above example. The initial vector was the same and we tried two
cases rn = 15, which did not show any sign of convergence and m = 20 which might have
eventually converged but was extremely slow. ..

6 Summary and Conclusion
W e have presented essentially two methods for computing a few eigenvalues and the cor-
responding eigenvectors or Schur vectors of large nonsymmetric matrices. Both techniques
rely heavily on a Schur Wielandt deflation procedure and preconditioning. The first one uses
Shift-and-Invert preconditioning and the second a form of polynomial preconditioning. These
methods are of interest only when the number of eigenvalues to be computed is relatively
small, such as when dealing with the stability analysis in nonlinear differential equations,
or in the analysis of various bifurcation phenomena. Our analysis of the appendix and our
experiments indicates that the Schur-Wielandt deflation is safe to use in general. There is
an a-posteriori upper bound (see appendix) which can be used in practice to estimate the
accuracy of the computed basis of the invariant subspace.

Although not mentioned before, the deflation technique can also be of great help when
dealing with the generalized eigenvalue problem. If one uses an Arnoldi or a nonsymmetric
Lancms method, big savings in computational cost can be achieved with deflation because
it allows one to compute more eigenvalues with the same shift and so fewer expensive factor-
izations must be performed. In essence the selective orthogonalization technique developed
by Parlett and Scott [23,40] realizes a similar deflation technique in the symmetric case but
does so in a more economical way.

~

.

24

7 APPENDIX: Error Analysis of Schur Wielandt de-
flation

In this appendix, we propose a few a posteriori error bounds in order to analyse the stability
of the deflation technique. Typically, at each step j = 1,2,. . . p of the deflation process we
compute an approximate eigenvalue X j and an associated normalized eigenvector yj of the
matrix 3 A - Uj-lCj-lUpl. As a convention we define A. to be the matrix A. The
approximate eigenpair satisfies the relation

Aj-lyj = Xjyj + qj, j = 1,. . . p (35)

where the residual vector qj is some vector of small norm and is assumed to include both
the effects of approximation and rounding. It is assumed that the matrix Up is orthonormal
to working precision. Our purpose is to provide some information on the accuracy of the
Schur basis Up and possibly of the eigenvalues obtained from the approximate eigenvalues
X j , j = l , . . . p .

At step number j , the vector yj is orthogonalized against u1, u2,. . . , uj-1 to obtain the
j t h approximate Schur vector u,. This is realized by a Gram-Schmidt process and as a result
the following relationship between the vectors u; and y j holds:

j

p;,,u; = y, j = 1 ~ 2 , . . . p . (36)
i=l

Denoting by bj the vector of p components pI,j, Ad,. . . , pjj, O,O, . . . 0, the above relation can
be rewritten as

Upbj = yj. (37)
Replacing this relation in (35), we have

or

Although there are only p- 1 shifts Q; used when p eigenvalues are computed, it is convenient
to define ap G 0 and

Then (39) becomes

AUpbj = Uj-1Cj-1UE1Upbj + XjUpbj + qj- (39)

C, Diag (01, QZ, . . . , upl,up}. (40)

(41) AUpbj = Up [Cp + (X j - 0j)q bj + qj, j = 1 ,2 , . . - 7 P.

Let Bp be the p x p upper triangular matrix having as its column vectors the his, Ep the
N x p matrix having as its column vectors the 7:s and A, Diag(X1, XZ,. . . Xp}. Then the
above relation translates into the matrix relation:

25

which we rewrite in a final form as

AUp = Up [Ep + Bp(Ap - E,)B;'] + EpBpl. (43)

For convenience, we define

and

z, E,B;~

C, E, + Bp(Ap - Ep)Bi'.

(44)

(45)
Observe that when oi = Xi, i = 1 , . . . p - 1 then the matrix Up diagonalizes partially the
matrix A if E, = 0.

At the final stage of Algorithm ESWD, there are two ways of post processing before
. exiting.

0 Either one accepts the valuea Xi, i = 1,. . . p as approximate eigenvalues and doea not
attempt to improve them. The representation of the section of A in the approximate
invariant subspace Up is taken to be the matrix C, defined by (45).

0 Or one performs a final Galerkin projection onto the subspace spanned by Up in order
to improve the current approximations. This is done by replacing the approximate
eigenvalues Xi, i = 1 , . . . p by the eigenvalues of the matrix R, G U:AUp.

We will mainly focus our attention on the second approach, which is more attractive.
In this case the Galerkin process involves some extra work, since the computation of the
matrix Rp itself costs us p2 inner products. However, since p is small this is negligible as
compared with the total work incurred during the whole computation. Note that R, is a
full matrix with small lower triangular part, and one might still want the partial Schur form
corresponding to the improved eigenvalues. This is easily done by computing the Schur
factorization of the matrix R,, Rp = Q,SpQf and then defining the new Up matrix by

[wl, w2,. . . w ~ , ,] which complements the matrix
Up into an orthonormal N x N matrix, Le., so that the matrix [Up, W] is orthonormal. The
matrix representation of the matrix A in this new basis is such that

Up,new = UpQp-
Consider any N x (N - p) matrix W

in which X12 = UFAW, X,, = W H A W , and Zp, & have been defined above.

Zp is small. In fact, the factorization can be rewritten in the following form:
The above equation indicates that [Up, W] almost realizes a Schur factorization of A when

When a Galerkin correction step is taken, then the approximate Schur factorization corre-
sponds to taking Up as the basis of the eigenspace and Rp as the representation of A in
that subspace. As a consequence, in the approach using a correction step, equation (47)

26

establishes that the final result is equivalent to perturbing the initial matrix A by a matrix
which is unitarily similar to the matrix

(w"zp O 0). 0

Thus, the eigenvalues of Rp will be good approximations of those of A if they are well
conditioned, whenever the norm of WHZp is small. The first case (no correction) can be
treated in the same way and one can easily prove that the perturbation matrix is unitarily
similar to

This analysis proves that the key factor for the stability of the deflation method is the way
in which the norm of 2, increases.

We now wish to provide a result which establishes an a-posteriori upper bound of the
Frobenius norm of Zj as j increases. The column vectors z j , j = 1,2 , . . . p of Zp satisfy the
relation:

j

qj = Pijzi (50)
i=l

from which we derive the upper bound

Using the Cauchy-Schwartz inequality for the last term on the right-hand side we get

Since we have assumed that the eigenvector y;, which is orthogonalized against the previous
u:s, is of norm unity, an important observation is that the s u m of the squares of the p;, is one
and P j j represents simply the sine of the angle O j between yj and the subspace spanned by
the vectors u;, i = 1 , . . . j - 1. Therefore, denoting by p; the Frobenius norm of the matrices
Zi, i = 1,. . . p the above inequality reads

sin(ej)llzjll L llqjll+ CoS(@jj)pj-l. (53)

Adding the term ~ in (B j)p j -~ to both sides and using the inequality (a2 + b2)'I2 5 a + b for
the resulting left hand-side we obtain

sin(flj)pj 5 llqjll+ (ainflj + ws@j)pj-r, (54)

which is restated in the following proposition.

27

Proposition 7.1 The Frobenius norms pj of the matrices Zj, j = 1 , . . . p satisfy the recur-
rence relation

where 8j is the acute angle between the eigenvector yj obtained at the j t h deflation step and
the previous approximate invariant subspace span(Uj,l) and where qj is its residual vector.

It is important to note that since by definition sin 0, = pjj all the quantities involved
in the proposition are available during the computation and so the above recurrence is
easily computable starting with the initial value po = 0. The result can be interpreted as
follows: if the angle between the computed eigenvector and the previous invariant subspace
is small at every step then the process may quickly become unstable. On the other hand
if this is not the case then the process is quite safe, for small p. The interesting point
is that the above recurrence can practically be used to determine whether or not there is
such a risk of instability. The cause of the potential instability is even narrowed down to the
orthogonalization process. If each newly computed vector y, were orthogonal to the previous
ones then clearly Bp would be the identity matrix and there would be no risk of amplification
of errors. This opens up an interesting possibility. Assume that instead of computing an
approximate eigenpair Xj,yj satisfying the relation (35) one is able by some hypothetical
procedure to compute a Schur pair directly, i.e., a pair A i , uj satifying the analogous relation

.

i-1

Then an analysis similar to the one used to establish (43) would easily lead to the relation
AUp = Up&, + Ep where f i p is the upper triangular matrix having the diagonal elements
A;, i = l , p and the off diagonal elements 7ij, while Ep is defined as before. Thus, in this case
Z p is simply replaced by Ep and the process is always stable. In a way, however, the difficulty
is rejected to the hypothetical procedure that would compute the Schur pair. As an example,
a naive algorithm for computing a Schur pair would be to compute the eigenpair and then
orthogonalize the eigenvector yj against the previous uis to get uj. By doing so a relation of
the form (56) is always satisfied and qj and its norm can be explicitly computed. If llqjll is
not sufficiently small one goes back to compute the eigenpair A i , yj to higher accuracy until
11qjll is as s m a l l as wanted. The issue of whether there may exist other methods that deliver
directly Schur vectors, is worth investigating.

In this illustrative test taken from [33], we veri@ the error bound (55). The test matrix is
the same aa that of the numerical experiments section, but of size N=lOO, which corresponds
to a discretization of n = 50 interior mesh points. We have computed the 10 rightmost
eigenvalues and their associated Schur vectors by using an algorithm based on a polynomial
accelerated Arnoldi method as described in [33] which is different from ARNLS. We used
with m = 10, and polynomial of degree 100 = 5 x 20. Here, the stopping criterion for each
eigenpair is that the actual residual norm be less than e lo-'. In other words the norms of
the vectors q; as defined by (35) are less than e except for rounding in the actual computation
of this residual which is negligible in view of the fact that e is large compared to the unit

28

10

3 ttzjtt2
0.2679 108E-05
0.896 12 49 E-05
0.13134593-04
0.13989453-04
0.13979 79 E-04

Upper bound pj

0.11 6 15423-04
0.1857656E-04
0.32685753-04
0.67030713-04
0.67768943-04

Table 1: Comparison of the estimated Frobenius norms of the errors in the invariant sub-
spaces with the actual norms.

round-off. As soon as a new pair of complex conjugate eigenvalues converged, we computed
the corresponding new Frobenius norm of Zj and the corresponding estimate given by (55).
The results are shown in Table 1. The 10 rightmost eigenvalues are all complex and so they
appear in pairs. In this example, in fact in all our tests conducted with this class of test
matrices, there is a good agreement between the estimated norm and its actual value.

References
[l] W.E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigen-

[2] F. L. Bauer. Das verfahren der treppeniteration und verwandte verfahren zur losung

value problem. Quart. Appl. Math., 9:17-29, 1951.

algebraischer eigenwertprobleme. ZAMP, 8:214-235, 1957.

[3] P. N. Brown and A. C. Hindmarsh. Matriz-free methods for s t igsystems of ODE’S.
Technical Report UCRL-90770, Laurence Livermore Nat. Lab., 1984.

[4] P.N. Brown and Y.Saad. Hybrid GMRES methods for nonlinear systems of equations.

[5] E. Carnoy and M. Geradin. On the practical use of the Lanczos algorithm in finite ele-
ment applications to vibration and bifurcation problem. In Axel Ruhe, editor, Proceed-
ings of the Conference on Matriz Pencils, Lulea, Sweden, March 1982, pages 156-176,
University of Umea, Springer Verlag, New York, 1982.

for discrete newton algorithms. SIAM J. Stut. Scien. Comput., 7:533-542, 1984.

In preparation.

[6] T. F. Chan and K. R. Jackson. Nonlinearly preconditioned krylov subspace methods

[7] M. Clint and A. Jennings. The evaluation of eigenvalues and eigenvectors of real sym-
metric matrices by simultaneous iteration method. J. Inst. Math. Appl . , 8:111-121,
1971.

[8] J. Cullum and R. Willoughby. A Lanczos procedure for the modal analysis of very
large nonsymmetric matrices. In Proceedings of the 23rd conference on Decision and
Control, Las Vegas, 1984.

29

[9] J. Cullum and R. A. Willoughby. Large Scale Eigenvalue Problems. North-Holland,
1986. Mathematics Studies series, Number 127.

[lo] D.H. Sattinger D.D. Joseph. Bifurcating time periodic solutions and their stability.
Arch. Rat. Mech. An, 45:79-109, 1972.

[Ill L. E. Eriksson and A. Rizzi. Analysis by computer of the convergence of discrete
approximations to the euler equations. In Proceedings of the 1983 AIAA conference,
Denver 1983, pages 407-442, AIAA paper number= 83-1951, Denver, 1983.

[12] C.W. Gear and Y. Saad. Iterative solution of linear equations in ode codes. SIAM J.
Sci. Stat. Comp., 4:583-601, 1983.

[13] G. H. Golub and C. Van Loan. Matriz Computations. Academic Press, New York,
1981.

[14] H. Hlavacek and H. Hofmann. Modeling of chemical reactors xvi. Chemical Eng. Sci.,

[15] A. Jennings and W.J. Stewart. A simultaneous iteration algorithm for real matrices.

25: 151 7-1526, 1970.

ACM, Tmns. of Math. Software, 7:184-198,1981.

I161 A. Jennings and W.J. Stewart. Simultaneous iteration for partial eigensolution of real
matrices. J. Math. Inst. Appl., 15:351-361, 1980.

[17] A. Jepson. Numerical Hopf Bifurcation. PhD thesis, Cal. Inst. Tech., Pasadena, CA.,
1982.

[18] T. Kerkhoven and Y. Saad. Acceleration techniques for decoupling algorithms in semi-
conductor simulation. Technical Report 684, University of Illinois, CSRD, Urbana, IL.,
1987.

[19] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operator. J. Res. Nut. Bur. of Standards, 45:255-282, 1950.

[20] R. B. Morgan and D. S. Scott. Generalizations of davidson’s method for computing
SIAM J. Sci. Stat. Comput., 7:817-825, eigenvalues of sparse symmetric matrices.

1986.

[21] B. N. Parlett. How to solve (K - AM)% = 0 for large K and M . In E. Asbi
et al., editor, Proceedings of the 2nd International Congress on Numerical Methods for
Engineering (GAMNI 2), pages 97-106, Dunod, Paris, 1980.

[22] B. N. Parlett and D. R. Taylor andf 2. S. Liu. A look-ahead Lanczos algorithm for

[23] B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cliffs,

nonsymmetric matrices. Mathematics of Computation, 44:105-124, 1985.

1980.

30

[24] B.N. Parlett and Y. Saad. Complez Shift and Invert Strategies for Real Matrices. Tech-
nical Report YALEU/ DCS-RR-424, Yale University, Computer Science Dept., New-
Haven, Connecticut, 1985.

[25] B.N. Parlett and D. Taylor. A look ahead Lanczos algorithm for unsymmetric mat&
ces. Technical Report PAM-43, Center for Pure and Applied Mathematics, Berkeley,
California, 1981.

[26] M. Kubicek Raschman P. and M. Maros. Waves in distributed chemical systems: ex-
periments and computations. In P.J. Holmes, editor, New Approaches to Nonlinear
Problems in Dynamics - Proceedings of the Asilomar Conference Ground, Pacific Grove,
California 1979, pages 271-288, The Engineering Foundation, SIAM, 1980.

- [27] A. Ruhe. Rational krylov sequence methods for eigenvalue computations. Linear Alge-
bra and its Applications, 58:391-405, 1984.

[28] A. Ruhe and T. Ericsson. The spectral transformation Lanczos method in the numer-
ical solution of large sparse generalized symmetric eigenvalue problems. Math. Comp.,
35: 1251-1268, 1980.

[29] Y. Saad. Chebyshev accelaration techniques for solving nonsymmetric eigenvalue prob-
lems. Mathematics of Computation, 42:567-588, 1984.

[30] Y. Saad. The Lanczos biorthogonalization algorithm and other oblique projection meth-
ods for solving large unsymmetric systems. SIAM j. Numer. Anal., 19:470-484, 1982.

[31] Y. Saad. Least squares polynomials in the complex plane and their use for solving
sparse nonsymmetric linear systems. SIAM J. Num. Anal., 24:155-169, 1987.

. [32] Y. Saad. Least squares polynomials in the complez plane with applications to solving
sparse nonsymmetric matriz problems. Technical Report 276, Yale University, Com-
puter Science Dept., New Haven, Connecticut, 1983.

[33] Y. Saad. Partial Eigensolutions of Large Nonsymrnetric Matrices. Technical Re-
port YALEU/DCS/RR-397, Yale University, New Haven, CT., 1985.

[34] Y. S a d . Variations on arnoldi’s method for computing eigenelements of large unsym-
metric matrices. Lin. Alg. Appl., 34:269-295, 1980.

[35] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving nonsymmet-
ric linear systems. Mathematics of Computation, 44(170):417-424, 1985.

[36] Y. Saad and M.H. Schultz. GMRES: a generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

[37] G. Sander, C. Bon, and M. Geradin. Finite element analysis of supersonic panel flutter.
Int. J. Num. Meth. Engng., 7:379-394, 1973.

31

[38] D. S. Scott. Solving sparse symmetric generalized eigenmlue problems without factor-
ization. SIAM J. Num. Anal., 18:102-110, 1981.

[39] D.S. Scott. The advantages of inverted operators in rayleigh-ritz approximations. SlAM
J. on Sci. and Stat. Comp., 3~68-75, 1982.

[40] D.S. Scott. Analysis of the symmetric Lanczos process. PhD thesis, University of
California at Berkeley, Berkeley, CA., 1978.

[41] G. W. Stewart. Simultaneous iteration for computing invariant subspaces of non-
hermitian matrices. Numer. Mat., 25:123-136, 1976.

[42] G.W. Stewart. SRRIT - a FORTRAN subroutine to calculate the dominant invariant
subspaces of a real matriz. Technical Report TR-514, University of Maryland, College
Park, Maryland, 1978.

[43] D. Taylor. Analysis of the look-ahead Lanczos algorithm. Technical Report, Univ. Calif.
Berkeley, Berkeley, CA 94720, 1983. PhD thesis.

[44] L.B. Wigton, D.P. Yu, and N.J. Young. Gmres acceleration of computational fluid
dynamics codes. In Proceedings of the 1985 AIAA conference, Denver 1985, AIAA,
Denver, 1985.

[45] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford, 1965.

32

